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A steady-state turbulent flow in a plane slit or in a boundary layer serve as 
examples by means of which we examine the profiles of concentration and velo- 
city of fine suspended particles. 

The problem of particle distribution in agitated suspensions and in suspensions in gas 
has been covered extensively in the literature. Although the physical mechanisms responsible 
for the formation of the concentration and velocity profiles of the dispersed phase are known, 
on the whole, at the present time we have no generalizing and sufficiently noncontradictory 
models. At the same time, these profiles exhibit a number of extremely nontrivial features 
that are significantly dependent on the parameters of the flow and the physical character- 
istics of the phases, and where the dispersion-phase content is not overly small they are 
capable of seriously affecting the hydrodynamics and transport processes within the mixture. 
The characteristic concentration profiles in steady-state one-dimensional flows have been 
described, for example, in [1-7]; depending on the properties of the mixture phases and those 
of the flow, these may correspond to an accumulation of particles both in the central and 
peripheral regions of the flow. Analogous information with respect to the profiles of parti- 
cle velocity can be found in [6-9]; we normally note a lagging of the particles from the 
fluid in the core of the flow, whereas they precede the fluid in the region near the wall. 

For the sake of simplicity, in the following we will examine only the steady-state flow 
in a plane channel or in the boundary layer on a plane plate, neglecting the force of gravity. 
Moreover, we will assume the particles to be fine, and we will further assume that their 
weight and volume concentrations are small. First of all, this allows us to assume approxi- 
mately that the particles are totally attracted to the turbulent moles and, secondly, it 
allows us to neglect the reverse influence of the dispersion phase on the characteristics 
of turbulence, assuming the latter to coincide with the characteristics for the correspon- 

ding single-phase flow. 

The Reynolds equations, together with the assumptions adopted above, can be written 

in the form 

=_--- ap ~ 8_.8_( 8v -, �9 ) 
ax dy ~o~- -Po<v~vy> --f~, 

o=  aP F d ( , 2 )  ay -~y --P0< vv > --fv 

(1) 

for the continuous phase and in the form 

d.( O = -dy -- PI ~ < Vx V'. > 
) d (, 
+fx, 0= ay p1~ < o~ > )+& (2) 

for the dispersion phase; the longitudinal component fx and the lateral component f. of the 
interphase interaction forces have been referred to a unit volume of the mixture. 6sing 

the Stokes formula, we have 

/~  = I$~ (v - -  w) ,  l~ ----- 91~oI 2az- 
(3) 
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We will estimate the lateral component of the force on the basis of the familiar Saff- 
man formula [i0, Ii] for the force acting on the particle in shear flow. This gives us 

4 . 8  p ."W% [y=gep dv l /2(v__w),  ? ....... ": ( 4 )  
a 

the limitations imposed on the applicability of this formula are discussed below. 

Bearing in mind that in accordance with the assumption that Pl �9 << P0, we assume ap/dx = 
�9 /L = P0u,2/L. Combining the first of the equations in (i) and (2), and taking into con- 
sideration that when y = 0 (i.e., at the wall) <Vx'Vy'> = 0, after integration we have 

< v,,vv > = --L y + '~~ dy d~ ~=o " 

It follows further from the first of the equations in (2) that 

v - - w =  ~ dy (P Y -}- %. , dy dy u=o " 

Thus, the distribution of the tangential Reynolds stress and the velocity of interphase 
slippage through the cross section of the flow are uniquely defined in terms of the velocity 
profiles of the corresponding single-phase flow for which we must make use either of the 
theoretical or an empirical representation. For the sake of definiteness, we will examine 
the Van Driest model below [12, 13], which exhibits a certain theoretical foundation [14], 
i.e., we will assume that 

v u ,  S F('q) dT I, r I =  u , y  F(~I )=  2 
o % I -]- fOI )  ( 7 )  

f Oi) = { 1 + 4x 2 ~1 ~ [1 - -  exp ( - -  ~l/A)la} ~/2, 

where x = 0.4 [12] and A = 30 [14] are numerical coefficients. With consideration of (7), 
from (5) and (6) we have 

< v~ 4 > y I - t (n) y u, L 
2 = -+ , ~l = R e ,  R e ,  = 

v, L 1 + f (n) -L-' n 

O--W = IOlU, d { [_~_ 1 - - f ( ' l ] ) ] /  
( 8 )  

The corresponding representations for the flow in the pressure-free turbulent boundary 
layer are formally obtained out of (8) as L + ~. Let us note that for purposes of simplifi- 
cation no provision is made in (7) and (8) for the absence of velocity in the central region 
of the slit nor for the intermittence of turbulence at the outside edge of the boundary layer. 

With both large and small N the following asymptotic formulas follow from (8): 

< v'~v'~> ( I) y I 
u2, ~ - I -- ~ u Re ,~ ' ~ = L- >> Re---~ ' 

uS. , ~ g  I-- A---- i -  ' -L<< Re--7-' 

(9) 

the first of which corresponds to the logarithmic velocity profile and corresponds to the 
observed behavior of the tangential Reynolds stress outside of the viscous and transition 
layers [12, 15]. The second asymptote shows that on approach to the wall this stress tends 
to vanish, but by no means monotonically, and there exists a region in which it is positive. 

In order to gain some judgment as to the nature of the interphase slippage in the flow, 
from (8) let us calculate the relative volume flow of the dispersion phase in a wall layer 
of thickness y. Using the definition for $ in (3), we obtain 
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5~ / ~  Fig. i. Dimensionless relative flow q* = q/ 
q0Q~ as a function of the dimensionless co- 
ordinate g = y/L: 1-5) Re, = 10, 100, 250, 
500, i000. 

. .[ + 1-,,0,o.,.] 
- - ' ( l O )  

�9 q0 = a u , ,  Q = (2/9)  (P~/Po) (a/L) R e , .  

T h i s  f o r m u l a  i s  shown in  F i g .  1. I f  d l n ~ / d y  << 1, t h e  e x t r e m a  o f  q ( y )  c o r r e s p o n d  t o  
the zeros of velocity v- w, which in this case can be represented in the form 

- - ~ - -  -- URe, 1 n u (ii) 
ku, q~ dg ~ 1 q- [ (~1) n=~Re, ' 

U = (2/9) (p,/po) (alL) 2. 

For large and small N = $ Re, from (i0) and (ii) we obtain formulas analogous to (9). 

For example, 

( i v--m ~ U  ~1 1 Re,, ~>> Re---~' 
u ,  x 

( 8~z 4a)  A ~ l v - - w  ~ U  ,1 Re,~ Re,, ~<< Re,----*" 
u ,  

(12) 

We see that the fluid precedes the particle in the central region Y2 < Y < L, in the 
case of Re, m 1 occupying virtually the entire cross section of the flow, and also in the 
immediate vicinity of the wall, when 0 < y < Yl. In the intermediate layer Yl < Y < Y2 the 
particles move ahead of the fluid. The simplest estimate of the boundary for these regions 

can be obtained from (12): 

~i= Yl .! A z \*/a 1 " y~ ~ 1 (13) 

L a ' L �9 

I m m e d i a t e l y  a t  t h e  w a l l  t h e  v e l o c i t y  v i s  as  s m a l l  as  need  be ,  b e c a u s e  o f  t h e  c o n d i t i o n  
o f  a d h e s i o n ,  w h i l e  w i s  n e g a t i v e  and i n  o r d e r  o f  m a g n i t u d e  e q u a l  t o  u , U R e , .  Hence i t  becomes 
c l e a r  t h a t  t h e  p a r t i c l e s  a t  t h e  w a l l  (on  t h e  a v e r a g e ,  o f  c o u r s e )  move in  a d i r e c t i o n  o p p o s i t e  
t o  t h a t  o f  t h e  f l o w ,  w i t h o u t  any r e l a t i o n s h i p  t o  t h e  v e l o c i t y  o f  t h e  l a t t e r .  T h i s  r e v e r s e  
m o t i o n  o f  t h e  p a r t i c l e s  a t  t h e  w a l l s  has  been  e x p e r i m e n t a l l y  o b s e r v e d  [16,  t 7 ] .  ( L e t  us 
s t r e s s  t h a t  we have  n o t  t a k e n  i n t o  c o n s i d e r a t i o n  h e r e  t h e  c o n t a c t  i n t e r r e l a t i o n s h i p s  be tween  
t h e  p a r t i c l e s  and t h e  s o l i d  w a l l ,  t h e s e  b e i n g  c a p a b l e  o f  c o n s i d e r a b l y  a f f e c t i n g  t h e  r e s u l t  
u n d e r  c o n s i d e r a t i o n  h e r e .  M o r e o v e r ,  ou r  c o n c l u s i o n  l o s e s  any s i g n i f i c a n c e  f o r  l a r g e  Re ,  num- 
b e r s ,  when Yl becomes c o m p a r a b l e  t o  a . )  

In  t h e  e a r l i e r  a p p r o x i m a t i o n  d l n ~ / d y  ~ 1 f rom (7 )  and (11)  we a l s o  d e r i v e  a f o r m u l a  
f o r  t h e  r a t i o  o f  t h e  p a r t i c l e  and f l u i d  v e l o c i t i e s ,  a v e r a g e d  o v e r  t h e  c r o s s  s e c t i o n  o f  t h e  
slit, 
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Fig. 2. Distribution of particle volume con- 
concentration through the cross section of! 
the slit for the case in which log Re, = 3 
and 4 (the solid and dashed curves, respec- 
tively); 1-3) logE = 3, 4, 5. 

<w>l<v> =1--8,6=(<~>--<w>)/<v> 
r 1 Re*t ~ --I (14) 

The velocity of the interphase slippage as a function of the physical and regime param- 
eters qualitatively agrees with the experimental data (obtained primarily for turbulent flows 
in circular tubes [6-9]). The slippage effect is intensified as the dimensionless ratio 
Pl/P0 and a/L and the dynamic Reynolds number are increased, i.e., the velocity of the flow. 
However, within an increase in these two ratios the assumption of complete attraction of 
the particles by the turbulent moles becomes unacceptable. Moreover, the reduction in the 
pressure of the gas in the gas suspension leads to a breakdown in the assumption to the ef- 
fect that the weight concentration of the dispersion phase is small: in this case:, in the 
place of P0 it is more correct to use the quantity P0 + Pz<~ > as the effective densities. 
On the whole, this leads to considerable weakening of the influence exerted by these param- 
eters on the slippage effect. Let us also note that formulas (ii) and (14) become excessive- 
ly course with an increase in Re, and a/L, because of the formation of a significantly non- 
uniform concentration profile with a tendency of particle accumulation in the center of the 
slit and in the region in which the particles precede the fluid (see below). 

Let us now examine the particle concentration profiles. From the second of the equations 
in (i) and (2), with consideration of (4), (7), and (8), utilizing the above-stipulated sim- 
plifications, we obtain: 

[ , ,  d. o , ,  B--]< .o ~eRe,)J "dy-yl' ~+ =,--~-~<~<.;'>); (.+o.< >) o. 
! +'f~Re,) ]I �9 Y ~ , v v  = (lS) 

From this it follows, in particular, that p + p0<Vy'2> = const, i.e., for the deter- 
mination of <Vy'2> it is necessary to know the distribution of the static pressure p through 
the cross section of the flow. In the region of developed turbulence, i.e., outside of the 
viscous and transition layers, the relationship between p and y can, apparently, be neglected. 
We then have <Vy'2> = bu.~ 2, where b = const. From the Cont-Bello experimental data [15], 
the coefficient b diminishes in reality slowly from -i when $ ~ 0.4 to -0.7 when $ = i. Here, 
bearing in mind the derivation of the approximate results, we will neglect the change in 
b in this region, and <Vy'2> as a function of y within the limits of the viscous and transi- 
tion layers is determined on the basis of the results from [14], which yield 

< v J  > = b [1 - -  exp (-- ~ Re,fA)] 2 u~. ( 1 6 )  

From (15), with consideration of the definitions for ~ and 7 in (3), (4), and (16), 
we have 

dlnq~ {1_ d [r([Re,)_l] _~._[ f(~Re,)+l ]1/2 
-~- = ~ t (~ ReD + 1 - -  2 • 
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• ~e,)] exp( ~Re,A )}{ f(~Re,)+If(~Re*)--I _~+ 

II ~- -~-e, [L f(~Re,) ~- I 2 ]~/2 [1~-- exp ( ~e*)]2} -'' 
If= (3 ~b/3,2) (L/a). 

(17) 

If we take n = 30 [12] as the dimensionless coordinate of the external boundary of the 
transition layer, then in the region 30/Re, = $0 < $ < 1 in the place of (17) we can use 
the simple asymptote 

- ~ -  ~Re,~ 1--~-- q- I (18) xRe,~ ~-~-e, ' + 4 . R e , ~  . 

The value of ~ = ~2 = (<Re,) -z /a,  corresponding to the change in sign of the numerator 
in the right-hand side of (18), in the case of Re m ~ i, obviously falls within the region 
for which this asymptote is valid. The denominator of this quantity changes sign only with 
sufficiently small H at the point $ ~ 63, where $3 denotes its root when H = 0. If Re, 
i, 63 = (KRe,) -I < 60. Thus, in the ~ interval under consideration the denominator in the 
right-hand side of (18) is positive. From (18) we obtain the following for the core of the 

flow: 

~ exp [-- (2/H)l/~,m (I -- ]/$)1, 
i.e., in the center of the slit we have a maximum for q, all the more pronounced, the smaller 

and the larger He~. The smoothness condition when ~ = 1 is not satisfied because no pro- 
vision has been made for the absence of a flow velocity. In the region in which 6 - Re, -I/2, 
when H r Re, 3/4, we have 

while when H m Re, s/4 

q, -,, exp (~ + 1/~ Re, D, 

in either case ~ exhibits a minimum when ~ = 62 = (KRe,) -I/2. With a further reduction 
in $, i.e., on approach to the wall, the particle concentration increases with extreme ra- 

pidity. 

The concentration profiles obtained by numerical integration of Eqs. (17) and (18) are 
shown in Fig. 2. We see that in the region at the wall a concentration maximum is achieved. 
From a qualitative standpoint, these profiles are not in poor agreement with the newest ex- 
perimental data, describing virtually all of the observed types of distributions [i-7]. Thus 
the saucer- and saddle-shaped profiles correspond to large H and small Re,. With an increase 
in Re, when H m 1 the region of virtually uniform particle distribution expands, encompassing 
almost the entire cross section of the slit. As H is reduced, we find a transition from 
the uniform to the trapezoidal and to the cupola-shaped. (Here we employ the terminology 
of [7] and the Herman dissertation, used in the cited reference.) 

Equations (17) and (18) allow us to reject the hypothesis to the effect of virtually 
uniform particle distribution in the flow, such as was employed in the derivation of formu- 
las (11)-(14). Within the entire flow region we have 

d --URe, {I d~ [ f~Re*)-l] 
- 5 ] -  

[ f ( ~ R e , ) -  I ] dln ~I 
- [ ~ .~  Re,-)-~- 1 - - ~  j - - ~ - j ,  

u, 

and d in ~/d$ is determined from (17). 
consideration of (18) we have 

(19) 

In the region of developed turbulence from (19) with 
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Fig. 3. Profiles of dimensionless rate of phase slippage Av* = 
(v - w)/u,URe, in the cross section of the slit: a) logRe... = 
3 and 4 (solid and dashed curves, respectively); 1-3) log N"= 3, 
4, 5; b) 1-3) Re, = 50, 75, i00, logH = 4. 

( i) 
o - - w  ~-,URe, 1 1 x u21.1- V 1 -}- 4• t X 

u, ~ Re, ~ . (20) 

and here the corresponding formula from (12) obviously corresponds to the limit H -~ =. The 
distributions of the dimensionless relative phase velocity in the cross section of the slits 
are illustrated in Fig. 3. On the whole, these profiles confirm that which has been stated 
earlier relative to the nature of phase slippage. 

Neglecting the phase flows in the thin layer at the wall, i.e., 0 < y < Y0, it is thus 
not difficult to derive a formula for 6 from (14). Using (20), for the case in which Re, 
i, subsequent to integration we obtain 

8 "~ ~ U Re, On Re,) -i, HI ] / -~ ,  ~ 1 

and, in particular, for the ratio of phase velocities averaged through the cross section, 
with consideration of the definition of U in (ii), we have 

Analogously, 

< W.___._~> ,~,~| 2~ Pl (_.a_a~ 2 Re. 
( v > 9 Po ~, t ] In Re, 

8 ~ 2"I/~'U ReS,/2/1"I In Re,, nl'~, << I 

(21) 

and 

~m 

3 
/ 

z 

Fig. 4. Phase velocity ratio at the center of 
the slit as a function of the parameter Z: i- 
3) log(L/'a) = 3, 4, 5. 
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(m-----l-> ~ 1 - - 1 2 . 8 " ! / ~ -  p t . ( L ) 3  ~,"s/~ 
( v > 27s-----~ Po ln]~e'-----~ " (22)  

The formulas corresponding to (21) and (22) for the ratio of particle and fluid veloci- 
ties in the center of the slits can be obtained directly from (20). With arbitrary values 
for the ratio H/R~, we have 

_win - 1 - -  U Re, 1 
vm ~'SlnRe,  q-C ' vm = --~ lnRe, q-- C. (23) 

Let us rewrite this formula in the form 

w ~  ~ 1 - -  K (PdPo) Z~ 

v,,, In (L/a) + In Zo + In Z '  

K = ~/9, Z o = exp (~ C/2), Z = (alL) " l ~ , ,  

(24) 

using the definition of U and v m and introducing the parameter Z, usually used for correla- 
tion of experimental data (see, for example, [6]). The theoretical relationships between 
Wm/V m and Z are shown in Fig. 4. These are quite similar to the corresponding experimental 
curves from [6, 7, 9]. (Direct comparison of theory with experiment was not undertaken, 
since such curves are usually obtained for flows in a circular tube.) For gas suspensions 
the quantity from (24) becomes the negative quite rapidly as Z increases. To a considerable 
extent this represents something that is associated with our assumption of the total attrac- 
tion of the particles by turbulent moles, which can hardly be valid in the case of rather 
large Re,, particularly in the case of particles suspended in gases. 

Let us dwell in some detail on the physical significance of the first equation in (15), 
which follows out of the second equation in (2), and under the above assumptions can be pre- 
sented in the form 

'2 d(--c<v. >)fdg+fv=0, c=p1~, (25)  

where in the left-hand side it is the sum of the "thermodynamic" and regular forces acting 
on a particle per unit volume of mixture that actually plays a role. The first of these 
terms is expressed in standard fashion in (25) in terms of the derivative of the effective 
"pressure" of the dispersion phase, representing the corresponding density flux tensor com- 
ponent of the particle pulsation momentum associated with the transport of these particles 
by means of pulsation motion. Having divided (25) by ~ which, in this case, plays the role 
of effective mobility, we derive an equation which can be presented in the form 

- -  D de~g + o (W, + Ws:) = O, 

�9 2 . . . .  2 v l c tv [~/2  D = < v g  > W ~ =  1 cI<vg > , W s =  ( v - -w) . !  (26) 

This equation reflects the fact that the total mass flow of the dispersion phase is 
equal to zero. In this case the quantity D functions as the coefficient of turbulent parti- 
cle diffusion in the transverse direction, while W t and W S represent the velocities of the 
turbulent and ascending migrations of the particles, respectively (we again borrow the ter- 
minology from [7]). The rate of turbulent migration, first of all, was apparently introduced 
into the analysis in [18, 19]. Let us take note of the fact that the introduction of the 
diffusion flow and the coefficient of diffusion in terms of the thermodynamic force acting 
on the diffusing particles corresponds to the classic Einstein method. An analogous method 
was recently used in [20] to describe the laminar flows of suspensions and gas suspensions 
in the presence of Brownian or pseudoturbulent particle motion. 

In conclusion let us note the possible expedient trends in the subsequent development 
of the theory. First of all, of importance is the selection of an appropriate approximating 
expression for the velocity of single-phase turbulent flow wherein consideration is given 
both to the unique properties of the viscous and transition layers, as well as to the absence 
of velocity in the core of the flow. No less important is information regarding the distri- 
bution of the Reynolds stresses in the flow, which, in addition to everything else, makes 
it possible to determine the tensor of the coefficients for the turbulent diffusion of parti- 
cles. 
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The natural generalization of the theory must be clearly associated with consideration 
of the incompleteness of particle attraction by the turbulent moles and the reverse effect 
of the particles on the turbulence characteristics of the fluid, as well as with refinement 
of the expression for the transverse force acting on the particle. It is clear that the 
Saffman formula employed here is valid only in the case of a strictly laminar shear flow. 
Since it is nonlinear with respect to the velocity fields, the result of its averaging with 
respect to the turbulent flows does not, generally speaking, coincide with the force calcu- 
lated directly for the average fields. 

Finally, the proposed interpretation of particle behavior in turbulent flows leads to 
a new method of describing their turbulent diffusion, fundamentally distinguished from those 
with which we are familiar [7, 12]. Indeed, first of all, the diffusion phenomena are natu- 
rally included in the dynamic description of the motion of the dispersion phase by means 
of the Reynolds equations and, secondly, from the latter we derive the equations of the first 
order, but not of the second order, for those particle concentrations which are easily solved 
by the characteristic method. 

NOTATION 

A, constant in (7); a, particle radius; b, <Vy'2>/u~2; c, particle wake concentration; 
D, diffusion factor; F, f, functions introduced into (7)~ fx, fy, force components of the 
interphase interaction; K, coefficient in (24); L, half-widths of the slits; p, static pres- 
sure; q, relative volumetric flow of the dispersion phase; Q, U, parameters determined in 
(i0) and (ii); u,, dynamic velocity; v, w, average fluid and particle velocities; Wt, WS, 
migration velocities, introduced into (26); x, y, longitudinal and transverse coordinates; 
Z, Z 0, quantities introduced in (24); ~, ~, coefficients in (3) and (4); 6, parameter deter- 
mined in (14); ~ = Re,y/L; K, Karman constant; ~0, v0, dynamic and kinematic fluid viscosity; 

= y/L; P0, Pz, fluid and particle-material densities; ~, parameter determined in (17); ~, 
particle volume concentration; Re, = u,L/v0, dynamic Reynolds number; the angle brackets de- 
note averaging over the cross sections; the subscript m pertains to velocities determined 
at the center of the slit. 
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